Adversarial machine learning, a technique that attempts to fool models with deceptive data, is a growing threat in the AI and machine learning research community. The most common reason is to cause a ...
New vulnerabilities have emerged with the rapid advancement and adoption of multimodal foundational AI models, significantly expanding the potential for cybersecurity attacks. Researchers at Los ...
To human observers, the following two images are identical. But researchers at Google showed in 2015 that a popular object detection algorithm classified the left image as “panda” and the right one as ...
Adversarial attacks against the technique that powers game-playing AIs and could control self-driving cars shows it may be less robust than we thought. The soccer bot lines up to take a shot at the ...
When an engineer discovers that an AI system has generated a fabricated attack piece targeting them personally, the incident stops being theoretical and becomes an urgent warning about how adversarial ...
Adversarial AI exploits model vulnerabilities by subtly altering inputs (like images or code) to trick AI systems into misclassifying or misbehaving. These attacks often evade detection because they ...
Accuracies obtained by the most effective configuration of each of the seven different attacks across the three datasets. The Jacobian-based Saliency Map Attack (JSMA) was the most effective in ...
The context: One of the greatest unsolved flaws of deep learning is its vulnerability to so-called adversarial attacks. When added to the input of an AI system, these perturbations, seemingly random ...
As Artificial Intelligence (AI) becomes a bigger part of the IT landscape, cybersecurity is becoming an AI battlefield. The latest and most aggressive attacks in cybersecurity are now leveraging AI to ...